ALGORITHM 16
CROUT WITH PIVOTING
GEORGE E. FORSYTHE
Stanford University, Stanford, California

real procedure INNERPRODUCT(u, v) index : (k) start : (s)
 finish : (f);
value s, f; integer k, s, f; real u, v;
comment INNERPRODUCT forms the sum of u(k) × v(k) for k = s, s+1, . . . , f.
 If s > f, the value of INNERPRODUCT is zero. The substitution of
 a very accurate inner product procedure would make CROUT more
 accurate;

begin
 real h;
 h := 0; for k := s step 1 until f do h := h + u × v;
 INNERPRODUCT := h
end INNERPRODUCT;

procedure CROUT (A, b, n, y, pivot, INNERPRODUCT);
value n; array A, b, x, pivot; integer n, pivot;
real procedure INNERPRODUCT;
comment This is Cour's method with row interchanges, as
 formulated in reference [1], for solving Ax = b
 and transforming the augmented matrix [A b]
 into its triangular decomposition L U with all
 L[k, k] = 1. If A is singular we exit to 'singular,' a
 non-local label. pivot[k] becomes the current
 row index of the pivot element in the k-th
 column. Thus enough information is preserved
 for the procedure SOLVE to process a new
 right-hand side without repeating CROUT.
 The accuracy obtainable from CROUT would
 be much increased by calling CROUT with a
 more accurate inner product procedure than
 INNERPRODUCT;

begin
 integer k, i, j, imax, p; real TEMP, quot;
 for k := 1 step 1 until n do
 begin
 TEMP := 0;
 for i := k step 1 until n do
 begin
 p, 1, k - 1);
 if abs(A[i, k]) > TEMP then
 begin
 TEMP := abs(A[i, k]); imax := i
 end 3;
 end 2;
 pivot[k] := imax;
 comment We have found that A[imax, k] is the largest
 pivot in column k. Now we interexchange rows k and imax
 if imax ≠ k then
 if imax ≠ k then
 begin
 end 5;
 TEMP := b[k]; b[k] := b[imax]; b[imax] := TEMP
 end 4;
 comment The row interchange is done. We proceed to the
 elimination;
 if A[k, k] = 0 then go to singular;
 for i := k+1 step 1 until n do
 begin
 quot := 1.0/A[k, k]; A[i, k] := quot × A[i, k]
 end;
 for j := k+1 step 1 until n do
 A[p, j], p, 1, k - 1);
 b[k] := b[k] - INNERPRODUCT(A[k, p], b[p], p, 1, k - 1)
 end 1;
 comment The triangular decomposition is now finished,
 and we do the back substitution;
 for k := n step -1 until 1 do
 begin
 y[k] := (b[k] - INNERPRODUCT(A[k, p], y[p], p, k + 1, n))/A[k, k]
 end 4 CROUT;
 procedure SOLVE (B, c, n, z, pivot, INNERPRODUCT);
value n; array B, c, z, pivot; integer n, pivot;
real procedure INNERPRODUCT;
comment SOLVE assumes that a matrix A has already been
 transformed into B by CROUT, but that a new
 column c has not been processed. SOLVE solves the
 system Az = c, and the output z of SOLVE is
 precisely the same as the output y of the procedure
 statement CROUT (A, c, n, y, pivot, INNER-
 PRODUCT). However, SOLVE is faster, because it
does not repeat the triangularization of A;

begin
 integer k; real TEMP;
 for k := 1 step 1 until n do
 begin
 TEMP := c[pivot[k]]; c[pivot[k]] := c[k]; c[k] :=
 TEMP; c[k] := c[k] - INNERPRODUCT(B[k, p],
 c[p], p, 1, k - 1);
 end;
 for k := n step -1 until 1 do
 begin
 z[k] := (c[k] - INNERPRODUCT(B[k, p], z[p], p, k + 1, n))/B[k, k]
 end SOLVE

REFERENCE
 43–100 of John W. Carr III (editor), Application of Advanced
 Numerical Analysis to Digital Computers, (Lectures given at
 the University of Michigan, Summer 1968, College of
 Engineering, Engineering Summer Conferences, Ann Arbor,
 Michigan [1969]).
REMARK ON ALGORITHM 16
CROUT WITH PIVOTING (G. Forsythe, Communications ACM, September, 1960)
GEORGE E. FORSYTHE
Stanford University, Stanford, California

QUERY
Perhaps the most basic procedure for an ALGOL library of matrix programs is an inner product procedure. The procedure Innerproduct given on page 311 of [1] is fairly difficult to comprehend, and probably poses great difficulties for most translating routines. I merely copied its form in writing a modified inner product routine for [2]. My query is: How should one write an inner product procedure in ALGOL?

REFERENCES

REMARK ON ALGORITHM 16
CROUT WITH PIVOTING (G. E. Forsythe, Comm. ACM, 3 (Sept. 1960), 507-8.)
HENRY C. THACHER, JR.,* Argonne National Laboratory, Argonne, Illinois

This procedure contains the following errors:
a. In SOLVE, the expression
\[c[k] := c[k] - \text{INNERPRODUCT} \]
\[(B[k, p], c[p], p \neq 1, k - 1) \]
should read:
\[c[k] := c[k] - \text{INNERPRODUCT} \]
\[(B[k, p], c[p], p \neq 1, k - 1) \]
b. In CROUT, the specification part should read:
\text{array } A, b, y ; \text{ integer } n ; \text{ integer array } pivot ;
c. In SOLVE, the specification part should read:
\text{array } B, c, z ; \text{ integer } n ; \text{ integer array } pivot ;
The efficiency of the algorithm will be improved by the following changes:
a. In the elimination phase of CROUT, replace
\begin{verbatim}
for i := k + 1 step 1 until n do
begin
 quote := 1.0/A[i, k] ;
 A[i, k] := quot X A[i, k]
end ;
\end{verbatim}
by
\begin{verbatim}
for i := k + 1 step 1 until n do
 quote := 1.0/A[i, k] ;
 for i := k + 1 step 1 until n do
\end{verbatim}
b. Omit INNERPRODUCT from the formal parameter list in both CROUT and SOLVE, and declare INNERPRODUCT either locally, or globally. This avoids any reference to INNERPRODUCT in the calling sequence produced by a compiler.
It is also to be noted that a minor modification of CROUT allows it to be used to evaluate the determinant of \(A \).
All of these suggestions are included in a later algorithm.

* Work supported by the U. S. Atomic Energy Commission.