ALGORITHM 22
RICCATI-BESSEL FUNCTIONS OF FIRST AND SECOND KIND
H. Oser
National Bureau of Standards, Washington 25, D. C.

procedure RICCATIBESSEL (x, n, eps, S, C) ;
value x, n, eps ;
real x, eps; integer n; real array S, C ;
comment: RICCATIBESSEL computes $S_0(x) = (\pi/2)x J_0(x)$
and $C_0(x) = \mp (\pi/2)Y_0(x)$ for real $x \neq 0$ and all integer
values of k from 0 through n with a prescribed (absolute)
accuracy eps. The computation is done by using the recursion
relations of the cylinder functions. For $abs(x) > n$ both $S_n(x)$
and $C_n(x)$ are computed by using the recursion for ascending
orders. For $n > abs(x)$ the functions $S_n(x)$ are obtained by
using the recursion in descending orders. (See STEGUN-
ABRAMOWITZ, MTAC 11, 1957, 255-257). Reaching out two
different intervals beyond the order n, the two vectors $S_n(x)$
and $S_{n+1}(x)$ are checked if the maximum component of their
difference meets the tolerance eps. If this is not the case a
maximum of 10 iterations is set up to achieve the required
absolute accuracy. Initial values S_max and S_max-1 for the
backward iteration are computed from the corresponding
values S_{max-2} and S_{max-3}. No check of accuracy is done in
case $n < abs(x)$. Both $C_n(x)$ and $S_n(x)$ are affected in this
case by errors of the same order of magnitude as the sub-
routines for $sin(x)$ and $cos(x)$
begin real r1, r2, r3, r4, r5, r6, step, acc, max, a, b, d1, d2 ;
integer i, k, l, imax ;
real array W[0:n] ;
switch P := initial, improve ;
acc := \pi \delta ;
step := \pi \delta ;
imax := 10 ;
comment: These constants may be chosen differently, but
a caution has to be taken because of overflow. acc sets an
initial iteration to give roughly a 6-place accuracy.
Subsequent iterations should improve the result to 3 more
places each ;
i := 1 ;
if x = 0 then go to exit1 ;
if n < abs(x) then case1:
begin r1 := -sin(x) ;
r2 := r1 := C[0] := cos(x) ;
r5 := S[0] := sin(x) ;
for k := 1 step 1 until n do
begin C[k] := r3 := (2xk-1) x r2/x - r1 ;
S[k] := r6 := (2xk-1) x r5/x - r4 ;
r1 := r2 ;
r2 := r3 ;
r4 := r5 ;
r5 := r6
end k ;
go to finish ;
end case1 ;
case2:
i := 1 ;
r1 := -sin(x) ;
r2 := r1 := C[0] := cos(x) ;
for k := 1 step 1 until n do
begin C[k] := r3 := (2xk-1) x r2/x - r1 ;
r1 := r2 ;
r2 := r3
end ;
a := n ;
loop: for k := 1+n step 1 until if abs(x) \leq n
then 12+a else 2x+a+1 do
begin r3 := (2xk-1) x r2/x - r1 ;
if abs(r3/C[n]) > acc then go to S ;
r1 := r2 ;
r2 := r3 ;
comment: This loop is most liable to cause
overflow ;
end loop ;
k := if abs(x) \leq 11 then 12+a else 2x+a+1 ;
r2 := r1 ;
S := x \uparrow 2/4xk \uparrow 2xk2 ;
r5 := 1/\delta ;
go to P[1] ;
initial: for k := k step -1 until 0 do
begin W[if k > n+2 then n else k-2] := r4 :=
(2xk-1) x r5/x - r6 ;
r6 := r5 ;
r5 := r4
end ;
d1 := r5/x - r6 ;
d2 := if abs(W[0]) \geq abs(d1) then sin(x)/W[0] else cos(x)/d1 ;
for k := 0 step 1 until n do
begin W[k] := d2\times W[k] ;
acc := step \times acc ;
l := 2 ;
a := a + step \times (1/3) ;
r2 := C[n] ;
r1 := C[n-1] ;
go to loop ;
改善: for k := k step -1 until 0 do
begin S[if k > n+2 then n else k-2] := r4 :=
(2xk-1) x r5/x - r6 ;
r6 := r5 ;
r5 := r4
end k ;
d1 := r5/x - r6 ;
d2 := if abs(S[0]) \geq abs(d1) then sin(x)/S[0] else cos(x)/d1 ;
max := 0 ;
for k := 1 step 1 until n do
begin S[k] := d2\times S[k] ;
b := abs(S[k] - W[k]) ;
if b > max then max := b
end ;
if max < eps then go to finish ;
for k := 0 step 1 until n do W[k] := S[k] ;
acc := step \times acc ;
if i \geq imax then go to exit2 ;
i := i+1 ; a := a + step \times (1/3) ;
r2 := C[n] ;
r1 := C[n-1] ;
go to loop ;
exit1: go to finish ;
comment: x = 0 ;
exit2: go to finish ;
comment: maximum number of iterations reached ;
finish: end RICCATIBESSEL
CERTIFICATION OF ALGORITHM 22 [S17]
RICATTI-BESSEL FUNCTIONS OF FIRST AND
SECOND KIND [H. Oser, Comm. ACM 8 (Nov.
1960), 600]

THOMAS BRAY (Reed. 9 Mar. 1970)
Boeing Scientific Research Laboratories, Seattle, WA
98124

KEY WORDS AND PHRASES: Ricatti-Bessel functions, Bessel
functions of fractional order, spherical Bessel functions

CR CATEGORIES: 5.12

The procedure was translated into FORTRAN IV and run on
an IBM 360/44 using double precision arithmetic (15 significant
decimal digits). One error was discovered in the algorithm. The
tenth line following the line with the label “improve” reads:

for k := 1 step 1 until n do

This line should read:

for k := 0 step 1 until n do

The results $S_k(x)/z$ and $-C_k(x)/z$ were computed using this cor-
rection and compared with Tables 10.1, 10.2 and 10.5 of [1]. The
results agreed to the number of digits given in the tables for:

<table>
<thead>
<tr>
<th>x</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0(1)8</td>
</tr>
<tr>
<td>0.5</td>
<td>0(1)8</td>
</tr>
<tr>
<td>1.0</td>
<td>0(1)20</td>
</tr>
<tr>
<td>2.0</td>
<td>0(1)8</td>
</tr>
<tr>
<td>5.0</td>
<td>0(1)50</td>
</tr>
<tr>
<td>7.5</td>
<td>0(1)8</td>
</tr>
<tr>
<td>10.0</td>
<td>0(1)50</td>
</tr>
<tr>
<td>50.0</td>
<td>0(1)100</td>
</tr>
<tr>
<td>100.0</td>
<td>0(1)100</td>
</tr>
</tbody>
</table>

REFERENCES:
1. ABRAMOWITZ, M., AND STEGUN, I. A. Handbook of Mathematical