ALGORITHM 38
TELESCOPE 2
K. A. BRONS
RCA Advanced Programming, Pennsauken, N. J.

procedure Telescope 2 (N, L, eps, limit, c) ; value limit, L ;
integer N ; real L, eps, limit ; array c ;

comment Telescope 2 takes an Nth degree polynomial approximation $\sum_{k=0}^{N} c_k x^k$ to a function which was valid to within $\text{eps} \geq 0$ over an interval $(-L, L)$ and reduces it, if possible, to a polynomial of lower degree, valid to within limit >0. The initial coefficients c_k are replaced by the final coefficients, and deleted coefficients are replaced by zero. The initial eps is replaced by the final bound on the error, and N is replaced by the degree of the reduced polynomial. N and eps must be variables. This procedure computes the coefficients given in the Techniques Department of the ACM Communications, Vol. 1, No. 9, from the recursion formula

$$a_{k+1} = \frac{k \cdot L(k-1)}{(N+k-2) \cdot (N+k-2)} \cdot a_k$$

begin integer k ; real s ; array d[0 : N] ;

start:
if $N < 2$ then go to exit ; $d[N] := -c[N]$;
for k := N step - 2 until 2 do
$d[k-2] := -d[k] \times L \cdot 2 \times k \times (k-1) /$
$(N+k-2) \times (N+k-2) ;$
if $(N/2) - \text{enter} (N/2) = 0$ then $s := d[0]$ else $s := d[1]/N ;$
if $\text{eps} + \text{abs}(s) < \text{limit}$ then begin
$\text{eps} := \text{eps} + \text{abs}(s) ;$
for k := N step - 2 until 0 do
$c[k] := c[k] + d[k] ;$
$N := N - 1 ;$ go to start end ;
exit:

CERTIFICATION OF ALGORITHM 38
TELESCOPE 2 [K. A. BRONS, Comm. ACM, Mar., 1961]
JAMES F. BRIDGES
Michigan State University, East Lansing, Mich.

This procedure was tested on the CDC 160A using 160A FORTRAN. The 10th degree polynomial obtained by truncating the series expansion of $\exp (+x)$ was telescoped using $L = 1.0$ and $\text{lim} = 0.001$. The result was $N = 4$, $\text{eps} = 0.59159949 \times 3$ and coefficients -1.0000447, $+0.99730758$, $+0.49919675$, $+0.17734729$, $+0.043793910$. Errors were calculated for $x = -1.0, 0.62110$. The only error to exceed eps was at $x = 1.0$ and was within 0.6% of eps.