ALGORITHM 41
EVALUATION OF DETERMINANT
JOSEF G. SOLOMON
RCA Digital Computation and Simulation Group, Moorestown, New Jersey

real procedure Determinant (A,n);
real array A; integer n;
comment This procedure evaluates a determinant by triangulization;
begin real Product, Factor, Temp; array B[1:n, 1:n], C[1:n, 1:n];
integer Count, Sign, i, j, r, y;
Sign := 1; Product := 1;
for i := 1 step 1 until n do for j := 1 step 1 until n do
for r := 1 step 1 until n-1 do
begin Count := r-1;
zerocheck: if B[r,r] ≠ 0 then go to resume;
if Count < n-1 then Count := Count + 1 else go to zero;
for y := r step 1 until n do
begin Temp := B[Count+1,y]; B[Count+1,y] := B[Count,y]; B[Count,y] := Temp end;
Sign := -Sign; go to zerocheck;
zero: determinant := 0; go to return;
resume: for i := r+1 step 1 until n do
begin Factor := C[i,r] / C[r,r]
for j := r+1 step 1 until n do
begin B[i,j] := B[i,j] - Factor X C[r,j] end end;
for i := 1 step 1 until n do for j := 1 step 1 until n do
begin C[i,j] := B[i,j] end;
end for i := 1 step 1 until n do
for j := 1 step 1 until n do
begin B[i,j] := C[i,j] end;
Determinant := Sign X Product;
return: end

CERTIFICATION OF ALGORITHM 41
EVALUATION OF DETERMINANT [Josef G. Solomon, RCA Digital Computation and Simulation Group, Moorestown, N. J.]
BRUCE H. FRED
Dartmouth College, Hanover, N. H.

When Algorithm 41 was translated into Scalf for running on the LGP-30, the following corrections were found necessary:

1. In the “y” loop after “B[Count,y] := Temp” and before the “end” insert
 “Temp := C[Count+1,y];”
 “C[Count+1,y] := C[Count,y];”
 “C[Count,y] := Temp;”

2. “Sign” is an Algol word when capitalized. However, many systems (if not all) do not recognize the difference between small and capital letters. For this reason “Sign” was changed to “sign” for the LGP-30 run (and in the revision which follows later).

The following addition might be made in the specification as a concession to efficiency: “value A,n;”.

The following changes might be made to make the Algorithm less wordy:

1. for “Sign := 1; Product := 1;”
 put “Sign := Product := 1;”
 put “begin B[i,j] := C[i,j];”

The above corrections and changes were made and the program was run with the correct results, as follows:

\[
A = \begin{pmatrix}
10.96997 & 36.10765 & 96.72366 \\
2.35765 & -84.11265 & 87.932 \\
18.24689 & 22.13579 & 1.11123
\end{pmatrix}
\]

Determinant = 1527313.06

Hand calculation on a desk calculator gives the value of the determinant for the above matrix as 152,731,3600.
COLLECTED ALGORITHMS (cont.)

\[
A = \begin{pmatrix}
1.0 & 3.0 & 3.0 & 1.0 \\
1.0 & 4.0 & 6.0 & 4.0 \\
1.0 & 5.0 & 10.0 & 10.0 \\
1.0 & 6.0 & 15.0 & 20.0
\end{pmatrix}
\]

Determinant = .999999999 + 00

The above matrix, being a finite segment of Pascal's triangle, has
determinant equal to 1.000000000.

\[
A = \begin{pmatrix}
0.0 & 0.0 & 0.0 \\
5.0 & 9.0 & 2.0 \\
7.0 & 5.0 & 4.0
\end{pmatrix}
\]

Determinant = .000000000 + 00

This is, of course, exactly correct.

Finally, one major change can be made which does away with
several instructions and reduces variable storage requirements
by n². This change is the complete removal of matrix C from the
program. It is extraneous.

The revised Algorithm was translated into SCALF and run on
the LQP-30 with exactly the same results as above.

The revised Algorithm 41 follows.

REMARK ON REVISION OF ALGORITHM 41

EVALUATION OF DETERMINANT [Josef G. Solomon,
Comm. ACM 4 (Apr. 1961), 176; Bruce H. Freed,
Comm. ACM 6 (Sept. 1963), 520]

Leo J. Rotenberg (Recd 7 Oct. 63)
Box 2400, 362 Memorial Dr., Cambridge, Mass.

While desk-checking the program an error was found. For example, the algorithm as published would have calculated the value
zero as the determinant of the matrix

\[
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]

The error lies in the search for a nonzero element in the rth column
of the matrix b.

Editor's Note. Apparently the best general determinant evalu-
ators in this section are imbedded in the linear equation solvers
1963), 443] and Algorithm 135 [Comm. ACM 5 (Nov. 1962), 553,
557]. They search each column for the largest pivot in absolute
value. Algorithm 41 searches only for a nonzero pivot in each
column, and will therefore fail for the matrix

\[
\begin{pmatrix}
2^{t} & 1 & 1 \\
1 & 1 & 2 \\
1 & 1 & 1
\end{pmatrix}
\]

if \(t \gg a \), for a machine with \(a \)-bit floating point.

It is hoped that soon a good determinant evaluator will be
published to take the place of Algorithm 41.—G. E. F.

CERTIFICATION OF:

ALGORITHM 41 [F3]

EVALUATION OF DETERMINANT

ALGORITHM 269 [F3]

DETERMINANT EVALUATION

[Jaroslav Pfümm and Josef Straka, Comm. ACM 8
(Nov. 1965), 668]

A. Bergson (Recd. 4 Jan. 1966 and 4 Apr. 1966)

Computing Lab., Sunderland Technical College,
Sunderland, Co. Durham, England

Algorithms 41 and 269 were coded in 803 ALGOL and run on a
National-Elliott 803 (with automatic floating-point unit).

The following changes were made:
(i) \textbf{value} n; was added to both Algorithms;
(ii) In Algorithm 269, since procedure \textbf{EQUILIBRATE} is only
called once, it was not written as a procedure, but actually written
into the \textbf{procedure determinant} body.

The following times were recorded for determinants of order \(N \)
excluding input and output, using the same driver program and
data.

\[
\begin{array}{ccc}
N & T_1 & T_2 \\
10 & 0.87 & 0.78 \\
15 & 2.77 & 2.18 \\
20 & 6.47 & 4.78 \\
25 & 12.47 & 8.99 \\
30 & 21.37 & 14.98 \\
\end{array}
\]

From a plot of \(\ln(T_1) \) against \(\ln(N) \) it was found that

\[
T_1 = 0.00104N^{2.47}
\]

Similarly,

\[
T_2 = 0.00153N^{2.33}
\]

From a plot of \(T_1 \) against \(T_2 \), it was found that Algorithm 269
was 90.8 percent faster than Algorithm 41, but Algorithm 41
required less storage.