COLLECTED ALGORITHMS FROM

CACM

ALGORITHM 44

BESSEL FUNCTIONS COMPUTED RECURSIVELY

Maria E. Woscickr

RCA Digital Computation and Simulation Group,
Moorestown, New Jersey

procedure Bessfr(N, FX, LX, Z) Result: (J, Y);
value LX, FX N;
real FX, LX, Z; real array J, Y; integer N;
comment Bessel Functions of the first and second kind, Jp(X)
and Yp(X), integral order P, are computed by recursion for
values of X, FX = X = LX, in steps of Z. The functions are
computed for values of P, 0 = P = N. M[SUBJ, the initial
value of P being chosen according to formulae in Erdelyi’s
Asymptotic Ezpansions. The computed values of Jp(X) and
Yp(X) are stored as column vectors for constant argument in
matrices J, Y of dimension (N+41) by entier (LX — FX)/% 4+ 1);
begin real PI, X, GAMMA, PAR, LAMDA, SUM, SUM1;
integer P, SUB, MAXSUB;
PI := 3.14159265;
GAMMA := 57721566
PAR := 63.0 — 1.5 X fn (2 X PI);
MAXSUB := entier (LX — FX)/Z);
begin real array JHAT [0:N, 0:MAXSUB/;
integer array M[0:MAXSUB];
SUB := 0;
for X := FX step Z until LX do
begin if (X > 0) A (X < 10) then M [SUB] := 2 X entier (X) + 9
else
begin real ALOG;
ALOG := (PAR — 1.5 X fn (X))/X;
M [SUB] := entier (X X (exp (ALOG) + exp
(—ALOG))/2) end;
if N > M [SUB] then
begin for P := M [SUB] + 1 step 1 until N do
J [P, SUB] := 0 end;
JHAT [M [SUBJ, SUB]J := 10 T (—9);
comment Having set the uppermost Jp(X) to a very small
number we are now going to compute all the Jp(X) down to
P =0;
for P := M [SUB] step —1 until 1 do
JHAT [P—1,SUB] := 2 X P/X X JHAT [P, SUB] —JHAT
[P+1, SUBJ;
SUM := SUM1 := 0;
for P := 2 step 2 until (M [SUBJ + 2) do
SUM := SUM + JHAT [P, SUBJ;
LAMDA := JHAT [0, SUB] + 2 X SUM;
for P := 0 step 1 until N do
J [P, SUB] := JHAT [P, SUB] /LAMDA;
comment Jp(X) have been computed py use of jp(X);
for P := 2 step 2 until (M [SUB] + 2) do
SUMI := SUML + (-1) X (=1) T P + J (2 X P, SUB]

/2/P;
Y [0, SUB] := 2/PI X (J [0, SUB] X (GAMMA + #n(X/2))
+ 4 X SUM1);

for P := 0 step 1 until (M|SUB]-1) do

Y [P+41, SUB] := (—2/PI/P + J [P+1, SUB] X Y [P,
SUBJ)/J [P, SUBJ;

SUB := SUB + 1 end end end

4P 1-

0



