ALGORITHM 44
BESSEL FUNCTIONS COMPUTED RECURSIVELY
MARTIN E. WOJCIECH
RCA Digital Computation and Simulation Group,
Mooresville, New Jersey

procedure Bessr(N, FX, LX, Z) Result: (J, Y);
 value LX, FX, N;
 real FX, LX, Z; real array J, Y; integer N;
comment Bessel Functions of the first and second kind, \(J_\nu(X) \) and \(Y_\nu(X) \), integral order \(\nu \), are computed by recursion for values of \(X \), \(FX \leq X \leq LX \), in steps of \(Z \). The functions are computed for values of \(\nu \), \(0 \leq \nu \leq N \). M[SUB], the initial value of \(\nu \) being chosen according to formulae in Erdélyi's *Asymptotic Expansions*. The computed values of \(J_\nu(X) \) and \(Y_\nu(X) \) are stored as column vectors for constant argument in matrices \(J \), \(Y \) of dimension \((N+1) \times 1 \) by entier \((LX - FX)/Z + 1) \);
begin real PI, X, GAMMA, PAR, LAMDA, SUM, SUM1;
 integer P, SUB, MAXSUB;
 PI := 3.14159265;
 GAMMA := .57721566;
 PAR := 63.0 - 1.5 \times \ln (2 \times PI);
 MAXSUB := entier ((LX - FX)/Z);
begin real array JHAT [0:N, 0:MAXSUB];
 integer array M[0:MAXSUB];
 SUB := 0;
 for X := FX step Z until LX do
 begin if \((X > 0) \land (X < 10)\) then M[SUB] := 2 \times entier \((X) + 9\)
 else
 begin real ALOG;
 ALOG := (PAR - 1.5 \times \ln (X))/X;
 M[SUB] := entier \((X \times (exp (ALOG)) \times \exp \((ALOG)/2\))\);
 end;
 if N > M[SUB] then
 begin for P := M[SUB] + 1 step 1 until N do
 J [P, SUB] := 0 end;
 JHAT [M[SUB], SUB] := 10 \uparrow (-9);
 comment Having set the uppermost \(J_\nu(X) \) to a very small number we are now going to compute all the \(J_\nu(X) \) down to \(P = 0 \);
 for P := M[SUB] step -1 until 1 do
 JHAT [P-1, SUB] := 2 \times P/X \times JHAT [P, SUB] - JHAT [P+1, SUB];
 SUM := SUM1 := 0;
 for P := 2 step 2 until \((M[SUB] + 2)\) do
 SUM := SUM + JHAT [P, SUB];
 LAMDA := JHAT [0, SUB] + 2 \times SUM;
 for P := 0 step 1 until N do
 comment \(J_\nu(X) \) have been computed by use of \(\tilde{J}_\nu(X) \);
 for P := 2 step 2 until \((M[SUB] + 2)\) do
 SUM1 := SUM1 + \((-1) \times \downarrow \uparrow \uparrow \) \((2 \times P, SUB)\)
 \(\times \downarrow \uparrow \downarrow \) \(\downarrow \downarrow \);\n \(Y[0, SUB] := 2/PI \times (J[0, SUB] \times (GAMMA + \ln(X/2))) + 4 \times \downarrow \uparrow \downarrow \);\n for P := 0 step 1 until \((M[SUB]-1)\) do
 SUB := SUB + 1 end end end