ALGORITHM 47
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY
ARGUMENTS

John R. Herndon
Stanford Research Institute, Menlo Park, California

procedure LEGENDREA (m, n, x, r); value m, n, x, r;
integer m, n; real x, r;
comment This procedure computes any P_n^m(x) or P_n^m(ix) for
n an integer less than 20 and m an integer no larger than n.
The upper limit of 20 was taken because (42)! is larger than
10^4. Using a modification of this procedure values up to n=35
have been calculated. If P_n^m(x) is desired, r is set to zero. If
r is nonzero, P_n^m(ix) is computed;
begin
integer i, j; array Gamma [1:41];
real p, w, y;
if n = 0 then
begin p := 1;
go to gate end;
if n < m then
begin p := 0;
go to gate end;
z := 1; w := z;
if n=m then goto main;
for i := 1 step 1 until n-m do
z := x * z;
main: Gamma [i] := 1;
for i := 2 step 1 until n+m+1 do
begin Gamma [i] := w * Gamma [i-1];
w := w+1 end;
y := w/(x * x);
if r=0 then
begin y := -y;
w := -w end;
if x=0 then
begin i := (n-m)/2;
if (i+i) /= (n-m) then
begin p := 0;
go to gate end;
p := Gamma [m+n+1]/(Gamma [i+1] * Gamma [m+i+1]);
go to last end;
j := 3; p := 0;
for i := 1 step 1 until 12 do
begin if (n-m+2)/2 < i then go to last end;
p := p + Gamma [i] * Gamma [n+i-1-i+3] / (Gamma [i] * Gamma [n+i+2] * Gamma [n-i-1-m+j]);
z := z * y end;
last: z := 1;
for i := 1 step 1 until n do
z := z+z;
p := p/z;
if r /= 0 then
begin i := n-n/4;
if i < 1 then
p := -p end;
if m = 0 then go to gate;
j := m/2; z := abs(w+x * x);
if m /= (j+j) then
begin z := sqrt (z);
j := m end;
for i := step 1 until j do
p := p * z;
gate: LEGENDREA := p
end LEGENDREA;

CERTIFICATION OF ALGORITHM 47
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY ARGUMENTS [John R. Herndon, Comm. ACM, Apr. 1961]
Richard George
Argonne National Laboratory, Argonne, Ill.
* Work supported by United States Atomic Energy Commission.

This procedure was programmed in Fortran for the IBM 1620
and was tested with a number of real arguments. A few errors were
detected:
1. In the following sequence the end must be removed:
begin if (n-m+2)/2 < i then go to last end;
2. In these, the lower bound of 1 is needed:
for i := step 1 until n do
for i := step 1 until j do
3. There are four places where integer arithmetic is clearly inten-
tended and we must substitute the symbol + for the symbol /.
In addition, it might be mentioned that the statement
if m = 0 then go to main;
could be omitted from the Algol program without harm, though
the Fortran version requires it. Here, and elsewhere in the
procedure, one might make an equivalent but more succinct state-
ment. With change in style, the variable j could be eliminated.

CERTIFICATION OF ALGORITHM 47 [816]
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY ARGUMENTS [John R. Herndon, Comm. ACM 4
(Apr. 1961), 178]
S. M. Cobb (Reed. 6 Feb. 1969, 12 May 1969 and 9 July 1969)
The Plessey Co. Ltd., Roke Manor, Romsey, Hants, England

KEYWORDS AND PHRASES: Legendre function, associated Legendre function, real or imaginary arguments
CR CATEGORIES: 5.12

This procedure was tested and run on the I.C.T. Atlas computer.
In addition to the errors mentioned in the certification of August 1963 [2] the following points were noted.

1. The requirement that when \(n < m \) \(p := 0 \) must take precedence over \(p := 1 \) when \(n = 0 \). Hence the order of the first two if statements must be interchanged.

2. Most computers fail on division by zero. Hence the statement beginning if \(x = 0 \) then and ending with go to last end; should be inserted between \(w := 1 \); and \(y := w/(x \times x) \).

3. When \(x = 0 \), if the argument of the Legendre function is to be considered as real \(p \) must be multiplied by \((-1)^{i} \). This is achieved by inserting after the statement beginning \(p := \text{Gamma} \) \(m+n+1 \) the if statement

 \[
 \text{if } r \text{ then } p := p \times (-1)^{i};
 \]

(For a change in the meaning of \(r \) see item 5 below.)

4. After the label last in the compound statement beginning if \(r \not= 0 \) the statement \(i := n - n+4 \); is wrong. This should read

 \[
i := n - 4 \times (n+4);
 \]

5. Since \(r \) is used only as an indicator it is better that it be declared as Boolean. It can then be given the value true if the argument of the Legendre function is \(x \) and false if it is \(ix \). The following program changes are then necessary. The statement beginning

 if \(r = 0 \) then

becomes

 if \(r \)

The statement beginning

if \(r \not= 0 \) then

becomes

if \(\neg r \)

6. Computing time can be saved in several ways. First we should declare another integer \(k \) and set it equal to \(n - m \). The first statement of the procedure is then

 \[
k := n - m;
 \]

The next statement will begin

if \(k < 0 \) then

(This replaces if \(n < m \) then whose position has been changed in accordance with item 1 above.)

\(n - m \) is then replaced by \(k \) in the lines

 for \(i := 1 \) step 1 until \(n - m \) do

and

if \((i+1) \not= (n-m) \) then

Removing \(j \) as suggested in the previous certification leaves it free to be set to \(k + 2 \). This requires the following modification: instead of the unnecessary statement if \(n = m \) then go to main put

 \[
j := k + 2;
 \]

In the statement beginning if \(x = 0 \) then replace the line

begin \(i := (n-m) / 2 \);

by

begin \(i := j; \)

In the for loop beginning for \(i := 1 \) step 1 until 12 do a further small saving in computer time could be achieved by setting \(k \) to \(n - i \). The loop then becomes

for \(i := 1 \) step 1 until 12 do

begin if \(j + 1 < i \) then go to last;

 \[
k := n - i;
 \]

\[
p := p + \text{Gamma} \times (2 \times k + 3) \times \text{Gamma}[i] \times \text{Gamma}[k+2] \times \text{Gamma}[2-m+3];
\]

z := \(z \times y \)

\]