COLLECTED ALGORITHMS FROM CACM
75-P 1-0

ALGORITHM 75
FACTORS
J. E. L. Peck,
University of Alberta, Calgary, Alberta, Canada

procedure factors (n,a,u,v,r,c);
comment This procedure finds all the rational linear factors of
the polynomial \(a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 x + a_n \), with integral
coefficients. An absolute value procedure abs is assumed;

value \(n,a; \) integer \(r,n,v; \) integer array \(a,u,v; \)
begin comment We find whether \(p \) divides \(a_0 \), \(1 \leq p \leq \| a_0 \| \) and
\(q \) divides \(a_n \), \(0 \leq q \leq \| a_n \| \). If this is the case we try \((px \pm q) \);
integer \(p,q,a_0,a_n; \)
\(r := 0 ; \) \(c := 1 ; \) comment \(r \) will be the number of linear factors
and \(c \) the common constant factor;
TRY AGAIN: \(a_0 := a[0] ; \) \(a_n := a[n] ; \)
for \(p := 1 \) step 1 until abs(a0) do
begin if \((a0 \div p) \times p = a0 \) then
begin comment \(p \) divides \(a_0 \);
for \(q := 0 \) step 1 until abs(an) do
begin if \(q = 0 \lor (an + q) \times q = an \) then
begin comment \(q \) divides \(a_n \). If \(q = 0 \) we may
have a common constant factor, therefore; if \(q > 1 \land p = 1 \) then
begin integer \(j ; \)
for \(j := 1 \) step 1 until n-1 do
if \((a[j] \div q) \times q \neq a[j] \) then go TO NO CONSTANT;
for \(j := 0 \) step 1 until n do
\(a[j] := a[j] / q ; \)
c := c \times q ; \) go TO TRY AGAIN
end the search for a common constant factor;
NO CONSTANT:
begin comment try \((px - q) \) as a factor;
integer f,g,i,j; \(f := a0 ; \) \(g := 1 ; \)
comment we try \(x = q / p ; \)
for \(i := 1 \) step 1 until n do
begin \(g := g \times p ; \) \(f := f \times q + a[i] \times q \)
end evaluation;
if \(f = 0 \) then
begin comment we have found the factor \((px - q) ; \)
\(r := r + 1 ; \) \(u[r] := p ; \) \(v[r] := q ; \)
comment there are \(n \) linear factors;
begin comment we divide by \((px - q) ; \)
integer i,t; \(t := 0 ; \)
for \(i := 0 \) step 1 until n do
begin \(a[i] := t := (a[i] + t) / p ; \) \(t := t \times q \)
end i;
\(n := n - 1 \)
end reduction of polynomial. Therefore;
go TO if \(n = 0 \) then REDUCED else TRY AGAIN
end discovery of \(px - q \) as a factor. But
if we got this far it was not a factor so try \(px + q ; \)
\(q := -q ; \) if \(q < 0 \) then go TO NO CONSTANT
end trial of \(px \pm q ; \)
end \(q \) divides \(a_n \) and
end of \(q \) loop.
end \(p \) divides \(a_0 \), also
end factors procedure. There are now \(r \) rational linear factors \((u_1 x - v_1) \), \(1 \leq i \leq r \), and the reduced polynomial of
reduced degree \(n \) replaces the original. The common constant
factor is \(c \). Acknowledgments to Clay Perry.

CERTIFICATION OF ALGORITHM 75
FACTORS [J. E. L. Peck, Comm. ACM 5 (Jan. 1962)]
A. P. RELPH
The English Electric Co., Whetstone, England

Algorithm 75 was translated using the DECUS ALOH compiler and
gave satisfactory results after the following corrections had
been made:
begin if \(q = 0 \lor (an + q) \times q = an \) then
begin if \(q > 1 \land p = 1 \) then
was changed to
begin if \(q \leq 1 \) then go to NO CONSTANT;
if \((an + q) \times q = an \) then
begin if \(p = q \) then

begin c := c \times a0; \(a0 := 1 \)
end was changed to
begin c := c \times a[0]; \(a[0] := 1 \);
end

There are now \(r \) rational linear factors \((u_i x - v_i) \),
\(1 \leq i \leq r \),
was changed to
If \(r > 0 \) there are now \(r \) rational linear factors \((u_i x - v_i) \), \(1 \leq i \leq r \),

CERTIFICATION OF ALGORITHM 75
J. S. HILLMORE
Elliott Bros. (London) Ltd., Borehamwood, Herts.,
England

The following changes had to be made to the algorithm:
(1) For \(if \ q > 1 \land p = 1 \) then
\(put \ if \ q > 1 \land p = q \) then
(2) For \(begin c := c \times a0; \(a0 := 1 \) end
\(put \ begin c := c \times a[0]; \(a[0] := 1 \) end
(3) For \(if \ q = 0 \lor (an + q) \times q = an \) then
\(put \ if \ q = 0 \ then \ true \ else \ (an + q) \times q = an \) then
This change is necessary to ensure that the term \((an + q) \) is not
evaluated when \(q = 0 \).

The algorithm, thus modified, was successfully run using the
Elliott ALOH translator on the National-Elliott 803.
To return to the state \((p=1, q=0)\) after every factor or constant is found is inefficient. This can be avoided by substituting \(a[0]\) and \(a[n]\) for the identifiers \(a0\) and \(an\) respectively. The procedure then becomes:

procedure factors \(n, a, u, v, r, c\); value \(n, a\);
 integer array \(a, u, v\);
 integer \(r, n, c\);
begin integer \(p, q\);
 \(r := 0\); \(c := 1\);
 ZERO: if \(a[n]=0\) then
 begin \(r := r+1\); \(u[r] := 1\); \(v[r] := 0\); \(n := n-1\);
 go to ZERO
 end;
 for \(p := 1 \text{ step 1 until } \text{abs}(a[0])\) do
 begin if \((a[0]:p)\times p = a[0]\) then
 begin for \(q := 1 \text{ step 1 until } \text{abs}(a[n])\) do
 begin if \(q=1\) then go to \(\text{NO CONSTANT}\);
 \(\text{TRY AGAIN: if } (a[n]:q)\times q = a[n]\) then
 begin integer \(j\);
 for \(j := 0 \text{ step 1 until } n-1\) do
 if \((a[j]:q)\times q \neq a[j]\) then go to \(\text{NO CONSTANT}\);
 for \(j := 0 \text{ step 1 until } n\) do
 \(a[j] := a[j]/q\);
 \(c := c\times q\); go to \(\text{TRY AGAIN}\)
 end;
 \(\text{NO CONSTANT:}\)
 begin integer \(f, g, i\); \(f := a[0]\);
 \(g := 1\);
 for \(i := 1 \text{ step 1 until } n\) do
 begin \(g := g\times p\);
 \(f := f\times q + a[i]\times g\)
 end;
 if \(f=0\) then
 begin \(r := r+1\); \(u[r] := p\);
 \(v[r] := q\);
 begin integer \(i, t\); \(t := 0\);
 for \(i := 0 \text{ step 1 until } n\) do
 begin \(a[i] := t := (a[i]+t)/p\);
 \(t := t\times q\)
 end;
 \(n := n-1\)
 end;
 go to if \(n=0\) then \(\text{REDUCED}\)
 else \(\text{NO CONSTANT}\)
 end;
 \(q := -q\); if \(q<0\) then go to \(\text{NO CONSTANT}\)
 end;
 end;
 end;
 end;
end;}