ALGORITHM 95
GENERATION OF PARTITIONS IN PART-COUNT FORM
FRANK STOCKMAL
System Development Corp., Santa Monica, Calif.

procedure partgen(c,N,K,G); integer N,K; integer array c;
Boolean G;

comment This procedure operates on a given partition of the
positive integer N into parts \(\leq K \), to produce a consequent
partition if one exists. Each partition is represented by the
integers \(c[1] \) thru \(c[K] \), where \(c[j] \) is the number of parts of the
partition equal to the integer \(j \). If entry is made with \(G = \text{false} \),
procedure ignores the input array \(c \), sets \(G = \text{true} \), and pro-
duces the first partition of \(N \) ones. Upon each successive entry
with \(G = \text{true} \), a consequent partition is stored in \(c[1] \) thru \(c[K] \).
For \(N = KX \), the final partition is \(c[K] = X \). For \(N = KX+r \),
\(1 \leq r \leq K-1 \), final partition is \(c[K] = X \), \(c[r] = 1 \). When entry
is made with array \(c = \text{final partition} \), \(c \) is left unchanged and \(G \)
is reset to \(\text{false} \);

begin integer a,i,j;
 if \(\neg G \) then go to first;
 j := 2;
 a := c[1];
 test: if \(a < j \) then go to B;
 c[j] := 1 + c[j];
 c[1] := a - j;
 zero: for i := 2 step 1 until j - 1
 do c[i] := 0;
 go to EXIT;
B: if \(j = K \) then go to last;
 a := a + j \times c[j];
 j := j + 1;
 go to test;
first: G := \text{true};
 c[1] := N;
 j := K + 1;
 go to zero;
last: G := \text{false};
EXIT: end partgen