ALGORITHM 98
EVALUATION OF DEFINITE COMPLEX LINE INTEGRALS

John L. Pfaltz
Syracuse University Computing Center, Syracuse, N. Y.

procedure COMPLINEINTEGRAL(A, B, N, RSSUM);
value A, B, N; real A, B, N; array RSSUM;
comment COMPLINEINTEGRAL approximates the complex line integral by evaluating the partial Riemann-Stieltjes sum \(\sum_{z_{i-1}}^{z_i} f(z(t)) z_i - z_{i-1} \) where \(a \leq t \leq b \) and \(z_i \in (z_{i-1}, z_i) \). The programmer must provide 1) the procedures GAMMA(T, Z) to calculate \(z(t) \) on \(T \), and FUNCT(Z, F) to calculate function values, and 2) the end points \(A \) and \(B \) of the parametric interval and \(N \) the number of subintervals into which \([a, b] \) is to be partitioned;

begin integer I; real T, DELT; real array ZT, ZTL, DELZ, ZK, PART[1..2]; RSSUM[1] := 0.0; RSSUM[2] := 0.0;
DELT := (B - A)/N; T := A;
line: GAMMA(T, ZT);
if T = A then go to next;
for I := 1 step 1 until 2 do
begin
DELT[I] := ZT[I] - ZTL[I]; end;
for I := 1 step 1 until 2 do
begin
ZK[I] := ZTL[I] + DELZ[I]/2.0; end;
FUNCT(ZK, FZ);
for I := 1 step 1 until 2 do
begin
RSSUM[I] := RSSUM[I] + PART[I]; end;
if T < B - (0.25 × DELT) then go to next else go to exit;
next:
for I := 1 step 1 until 2 do
begin
ZTL[I] := ZT[I]; end;
T := T + DELT;
go to line;
exit: end COMPLINEINTEGRAL.